Bat Navigation Revealed

As the flying mammals navigate complex environments, they make use of specialized brain cells that cooperate to build a coordinate system that works in three dimensions.

Written byBob Grant
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

An Egyptian fruit bat (Rousettus aegyptiacus), the species in which Finkelstein et al. discovered new head-direction neurons that form 3-D neural compasses used to represent spatial orientation.YOSSI YOVELBats possess a complex neural compass that tracks their movements as they expertly crawl or fly through their environment, according to a study published this week (December 3) in Nature. Arseny Finkelstein, a PhD student at the Weizmann Institute of Science in Rehovot, and colleagues used a newly developed tracking device to monitor the head angles of naturally behaving Egyptian fruit bats (Rousettus aegyptiacus) while recording electrical impulses from single brain cells.

Finkelstein told The Scientist that acrobatic bats were ideal models to examine in search of a complex, mental compass. “Because there are such masters of 3-D space, we saw that if we want to start understanding and try to analyze the neural components of the 3-D compass, we should start with animals that we know for sure have it.”

The researchers discovered that the bats have the head-direction sensing cells—which respond to directionality in the horizontal plane, or azimuth—scientists discovered three decades ago in rodents. But the team also found new types orientation cells: ones that responded to pitch, or vertical orientation, roll, or tilt to the left or right, plus cells that responded to combinations of those orientations. All of these cells combine to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH