Beneficial Brew

Drinking green tea appears to boost the activity of DNA repair enzymes.

Written byRina Shaikh-Lesko
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GOOD FOR YOUR ENZYMES: Green tea’s beneficial effects may be due to a boost in enzymes that protect and repair DNA. MCKAY SAVAGE/WIKIMEDIA COMMONS

The paper C.K. Ho et al., “Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study,” Mol Nutr Food Res, doi:10.1002/mnfr.201300751, 2014. The context Researchers have long reported that green tea drinkers have better health outcomes, but why that is has been unclear. To get to the cellular roots of these observations, Iris Benzie of the Hong Kong Polytechnic University and her colleagues monitored the activity of DNA repair enzymes in lymphocytes shortly after people drank a cup of green tea and after a week of drinking two cups of tea each day. The findings An enzyme critical for fixing DNA damage from oxidation, hOGG1, and another ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH