Bird, Fish, and Fly Cells Reprogrammed

Using mouse genes, researchers partially transform differentiated, non-mammalian cells into pluripotent stem cells.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

COURTESY RICARDO ROSSELLOThe ability to reprogram differentiated cells toward pluripotency has been a remarkable achievement, though its application has mostly been limited to mammals. Researchers published in eLife this week (September 3) evidence of induced pluripotency in cells from the non-mammalian model organisms zebra finch, chicken, zebrafish, and Drosophila. While the study’s authors cautioned that these cells were only partially reprogrammed, and therefore not induced pluripotent stem cells (iPSCs), lead author Ricardo Rossello said that “they have a slew of phenotypic characteristics of stem cells.”

The University of Puerto Rico’s Rossello and his colleagues, who study vocalization in songbirds, had been looking for a way to gather stem cells from the animals. “But nobody has really quite isolated stem cells” from the zebra finch, he said. So they decided to try and create them. In humans and other mammals, the overexpression of four genes can turn a skin or some other specialized cell into a pluripotent stem cell.

Although homology to these genes was not great in the finch, Rossello said a portion of the genes’ proteins involved in transcriptional regulation, the DNA binding domains, were quite similar. So they went ahead and inserted a viral vector carrying the four mouse reprogramming factors into embryonic fibroblast cells from the songbird. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours