Bird’s-Eye Proteomics

A guide to mass spectrometers that can handle the top-down-proteomics challenge

Written byAsher Mullard
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

PAINTING BY PEPTIDE: Multiplex mass-spectrometry image of a section through a rat kidney taken at 150 µm spatial resolution. Each color represents an individual peptide or protein of specific mass-to-charge (m/z) ratio. JUNHAI YANG AND RICHARD CAPRIOLI, MASS SPECTROMETRY RESEARCH CENTER, VANDERBILT UNIVERSITYLast year, when Albert Heck ran a commercially purchased sample of chicken ovalbumin through his mass spectrometer, he knew it would turn out to be more heterogeneous than researchers typically assumed. But his discovery that the commonly used molecular weight marker exists as at least 59 distinct proteoforms, each with a unique set of posttranslational modifications, was eye-opening. “We were expecting 10–15 proteoforms,” says Heck, the head of biomolecular mass spectrometry and proteomics at Utrecht University. “We were surprised.”

Heck’s finding underscores the growing need for and interest in top-down proteomics. Researchers have made huge strides cataloging the thousands of proteins that make cells tick, relying primarily on bottom-up approaches to build proteomics libraries. But because the bottom-up strategy consists of digesting the proteins, firing the fragments into a mass spectrometer, and then piecing the resulting data back together, the protein sketches it generates are out-of-focus composites, made up of averages glimpsed from among a fog of fragments. Top-down analyses, in which researchers feed intact proteins directly into mass spectrometers, capture the distinct characteristics of each one-of-a-kind proteoform.

“Molecular analysis should be done top-down,” says Neil Kelleher, professor of molecular biosciences and chemistry at Northwestern University, who has been pioneering top-down proteomics for more ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery