Book Excerpt from Deep Medicine

In Chapter 10, “Deep Discovery,” author Eric Topol considers the marriage of omics and AI.

Written byEric Topol
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The massive datasets that are now emerging in biomedicine have created an imperative to adopt machine learning and AI. Take, for example, the Cancer Genome Atlas of multidimensional biologic data, comprising various “omics” (genomics, proteomics, and so on). All told the atlas holds more than 2.5 petabytes of data generated from more than 30,000 patients. No human could wade through that much data. As Robert Darnell, an oncologist and neuroscientist at Rockefeller University put it, “We can only do so much as biologists to show what underlies diseases like autism. The power of machines to ask a trillion questions where a scientist can ask just ten is a game-changer.”

That said, unlike the immediate and ongoing changes that AI is unleashing on clinicians in the pattern-heavy medical fields like pathology and radiology, AI isn’t yet challenging the status quo for scientists in any significant way; AI is just here to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH