Book Excerpt from Flavor

Author Bob Holmes dove into the taste-determining realm of his genome.

Written byBob Holmes
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

W.W. Norton & Company, April 2017Scientists know a fair bit about the genetics that underlie people's taste perceptions—enough, in fact, to make it clear that each of us lives in a unique world of flavor. Genetic differences likely explain some (though not all) of why former president George H.W. Bush hated broccoli, why a gin and tonic is ambrosia to one person and anathema to another, or why some of us put sugar in our coffee. I wanted to learn more—and, especially, I wanted to know where my own taste perceptions fit into the picture. That brought me to the Monell Chemical Senses Center in Philadelphia.

In particular, I wanted to see Danielle Reed, who has done a lot of the best work on genetic differences in taste perception. A few months before my visit, I had drooled into a vial and shipped it off to Reed for genetic analysis. (Saliva contains enough cells that geneticists no longer need blood sampes or even cheek swabs to run their DNA tests.) Now it's time to see how my sense of taste compares with everyone else's.

Reed's taste-test procedure couldn't be more low-tech. Her assistants hand me a box containing several numbered vials of liquid, plus a large plastic cup to spit into. Starting with vial 1, I sip the liquid, swish it around in my mouth, and spit into the cup, indicating ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series