Book Excerpt from Paul Lauterbur and the Invention of MRI

In Chapter 6, “The first fruitful weeks,” author M. Joan Dawson describes her late husband’s first steps in the invention of a revolutionary imaging technology.

Written byM. Joan Dawson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MIT PRESS, AUGUST 2013Life is so strange. It was because of the tortured history of NMR Specialties that Paul happened to be on hand to witness the experiments that raised in his mind the possibility of Magnetic Resonance Imaging. Paul was always squeamish about everything medical and biological, everything that had to do with blood and other tissues. He was loath to go to doctors and totally intimidated by the idea that he might have to have an injection or to have blood drawn. So finding a way to do NMR studies noninvasively took on a special meaning for him.

But how? The nuclear magnetic resonance signal is governed by the simple Larmor equation, which holds that the frequency of the signal is proportional to the strength of the applied magnetic field. Paul’s initial insight about NMR imaging was one brilliant flash of an idea: Gradients of magnetic field applied across the sample would localize any spatial position. This was the key. It is of some interest that this concept was simply waiting to be discovered since the days when Bloch and Purcell first found the phenomenon of Magnetic Resonance, and that the reaction of many in the NMR community, especially among physicists was that something so simple could not be true. But the new idea, MRI, born on that bite of a Big Boy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform