Boosting Plants’ Uptake of Vitamins and Minerals

With genetic tweaks, researchers can coax corn and other cereals to take in more iron, but sometimes the plants rebel.

Written byAshley Yeager
| 4 min read
notebook

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: This striped-leaf corn (top) is a mutant with an impaired ability to take up iron. Understanding the mechanisms behind iron transport could help researchers biofortify crop plants meant for human consumption.
UMASS AMHERST

The corn Elsbeth Walker grows looks a bit strange. Its leaves are streaked with yellow, instead of being entirely green. This yellow-streaked corn is a mutant that has trouble taking in iron, making it hard for the plant to create chlorophyll, a green pigment involved in photosynthesis.

Walker, a molecular biologist at the University of Massachusetts Amherst, and her colleagues are studying the yellow-striped corn to learn more about how iron transport works in plants. The information they glean, she says, could help researchers genetically engineer corn and other staple grains to take in more of the mineral, and, ultimately, deliver it to people who lack sufficient iron in their diets.

“The places in the world where ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH