Boosting Plants’ Uptake of Vitamins and Minerals

With genetic tweaks, researchers can coax corn and other cereals to take in more iron, but sometimes the plants rebel.

| 4 min read
notebook

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: This striped-leaf corn (top) is a mutant with an impaired ability to take up iron. Understanding the mechanisms behind iron transport could help researchers biofortify crop plants meant for human consumption.
UMASS AMHERST

The corn Elsbeth Walker grows looks a bit strange. Its leaves are streaked with yellow, instead of being entirely green. This yellow-streaked corn is a mutant that has trouble taking in iron, making it hard for the plant to create chlorophyll, a green pigment involved in photosynthesis.

Walker, a molecular biologist at the University of Massachusetts Amherst, and her colleagues are studying the yellow-striped corn to learn more about how iron transport works in plants. The information they glean, she says, could help researchers genetically engineer corn and other staple grains to take in more of the mineral, and, ultimately, deliver it to people who lack sufficient iron in their diets.

“The places in the world where ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio