Brain Expression

Researchers map the expression patterns of 1,000 genes in the human brain.

Written byEdyta Zielinska
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share


H. Zeng et al., “Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures,” Cell, 149:48-96, 2012.


Whole-genome sequencing has given researchers a good sense of which genes are shared between, for example, humans and mice. But little is known about how the expression patterns of these genes differ. Hongkui Zeng of the Allen Institute for Brain Science in Seattle, Washington, and colleagues took slices of human brains collected from postmortem biopsies and tested the expression of 1,000 key neuronal genes. They found that about 21 percent of the gene-expression profiles differed between the two species.

Researchers took thin slices from regions of the brain involved in processing visual and sensory information and scanned them for the in situ expression of 1,000 genes that act as markers of cell type or are involved in disease, evolution, or cortical function. They compared gene expression of three areas of the cortex ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH