Calculating Predator

The Venus flytrap tailors its response to prey by counting the number of action potentials induced by trigger hairs inside its trap.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mealworm inside a Venus flytrapWIKIMEDIA, BEATRICE MURCHDionaea muscipula, commonly known as the Venus flytrap, makes up for living in low-quality soil by supplementing its diet with nitrogen-rich insect prey. Scientists in Germany have found that the mechanical and physiological behavior of the flytraps is tightly regulated by how many times the trap’s small, mechanosensitive hairs are triggered to produce action potentials. Their findings were published last week (January 21) in Current Biology.

“The number of action potentials informs [the plant] about the size and nutrient content of the struggling prey,” said Rainer Hedrich of the University of Würzburg, Germany, in a press release. “This allows the Venus flytrap to balance the cost and benefit of hunting.”

To investigate the plant’s regulation of prey capture and digestion, the researchers attached surface electrodes to the inside lobes of the trap, and then simulated an insect’s movement by tapping the trap’s hairs. They also monitored the expression of genes associated with the manufacture of jasmonate, a hormone that primes glands in Venus flytraps to produce digestive enzymes.

The team found that just a single hair-triggered action potential is enough to prepare the trap, while a second action potential right after ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH