Catching Criminals

A tactic designed to nab repeat offenders also pinpoints the source of infectious diseases and invasive species.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

CHOLERA CARTOGRAPHY: Profiling the 1854 London cholera outbreak: black circles show addresses of victims, and blue squares, the neighborhood water pumps. The pump at the peak is the Broad Street pump, the source of the outbreak.
View full size JPG | PDF
COURTESY OF STEVE LE COMBER
Peter Sutcliffe killed his first victim much as he would others: he struck the woman twice with a hammer, then stabbed her 15 times. Sutcliffe, who would come to be known as the Yorkshire Ripper, followed up that first gruesome murder in October 1975 with 12 more over the next 5 years. Local police gathered tips and interviews from terrorized citizens of the northern English county, and workers had to reinforce the floor of the station’s evidence room to bear the weight of the paperwork. But it wasn’t clever detective work or a sloppy crime that was Sutcliffe’s undoing—it was a driving offense. Officers arrested him for having stolen license plates in January 1981. After he confessed to the crimes, police realized that they had interviewed him nine times over the 5-year investigation.

Though the West Yorkshire police were criticized for their handling of the case, the advent of digital, searchable records would certainly have been an enormous help to pre-computer-era law enforcers. Moreover, a new criminal investigative method called geographic profiling could have cracked the 5-year-long case in a matter of hours.

“Sutcliffe’s name was on the top of the list,” says Steve Le Comber, of Queen Mary, University of London, recounting the results of plugging the Ripper data into the geographic profiling model. But Le Comber isn’t a criminologist or in the law enforcement business; he’s a biologist studying animal foraging behaviors, infectious disease, and invasive species.

Le Comber first read about geographic profiling in a magazine article and saw connections between the way it mapped ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development