Catching Criminals

A tactic designed to nab repeat offenders also pinpoints the source of infectious diseases and invasive species.

Written byBeth Marie Mole
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

CHOLERA CARTOGRAPHY: Profiling the 1854 London cholera outbreak: black circles show addresses of victims, and blue squares, the neighborhood water pumps. The pump at the peak is the Broad Street pump, the source of the outbreak.
View full size JPG | PDF
COURTESY OF STEVE LE COMBER
Peter Sutcliffe killed his first victim much as he would others: he struck the woman twice with a hammer, then stabbed her 15 times. Sutcliffe, who would come to be known as the Yorkshire Ripper, followed up that first gruesome murder in October 1975 with 12 more over the next 5 years. Local police gathered tips and interviews from terrorized citizens of the northern English county, and workers had to reinforce the floor of the station’s evidence room to bear the weight of the paperwork. But it wasn’t clever detective work or a sloppy crime that was Sutcliffe’s undoing—it was a driving offense. Officers arrested him for having stolen license plates in January 1981. After he confessed to the crimes, police realized that they had interviewed him nine times over the 5-year investigation.

Though the West Yorkshire police were criticized for their handling of the case, the advent of digital, searchable records would certainly have been an enormous help to pre-computer-era law enforcers. Moreover, a new criminal investigative method called geographic profiling could have cracked the 5-year-long case in a matter of hours.

“Sutcliffe’s name was on the top of the list,” says Steve Le Comber, of Queen Mary, University of London, recounting the results of plugging the Ripper data into the geographic profiling model. But Le Comber isn’t a criminologist or in the law enforcement business; he’s a biologist studying animal foraging behaviors, infectious disease, and invasive species.

Le Comber first read about geographic profiling in a magazine article and saw connections between the way it mapped ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies