Cell Reprogramming Successes

Two studies demonstrate the first direct, chemical reprogramming of mouse and human skin cells into heart muscle and neural cells.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Neurons created from neural stem cells derived using a new direct cell reprogramming methodMINGLIANG ZHANG, PHD, GLADSTONE INSTITUTES (VIA EUREKALERT)Researchers have developed a method to directly reprogram cells using a combination of nine chemical compounds. The procedure bypasses the induced pluripotency step that has been used in previous chemical methods of cell reprogramming, as well as the gene introduction step that has been a focus of other attempts to reprogram cells directly. Led by stem cell biologist Sheng Ding at the Gladstone Institute of Cardiovascular Disease in San Francisco, the researchers demonstrated the procedure’s potential by reprogramming human skin cells into functional heart muscle and mouse skin cells into neural stem cells. The results were published last week (April 28) in Science and Cell Stem Cell, respectively.

“This method brings us closer to being able to generate new cells at the site of injury in patients,” Ding, who is also a professor at the University of California, San Francisco, said in a statement. “Our hope is to one day treat diseases like heart failure or Parkinson's disease with drugs that help the heart and brain regenerate damaged areas from their own existing tissue cells.”

In the Science study, Ding’s team used trial and error to find a combination of chemicals that could induce human skin cells to turn into multipotent stem cells, and then into cardiomyocytes. Honing the technique, the researchers were able to produce a population of cells that molecularly resembled heart muscle and developed into apparently healthy heart muscle when ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH