Cellular Chemotaxis

Two papers detail how a cell’s gradient sensing and cytoskeletal architecture dictate one mode of chemotactic movement.

Written byTracy Vence
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Dictyostelium discoideum exhibiting chemotaxisWIKIMEDIA, BRUNO IN COLUMBUSResearchers have long realized that cells can sense and move toward chemical stimuli. Now, investigators from the Johns Hopkins Medicine in Baltimore, Maryland, have shown that one mode of such movement depends on the cell’s cytoskeletal architecture, which is influenced by chemoattractant gradients.

Observing and modeling the activities of amoebas and human neutrophils, Johns Hopkins’s Ming Tang and colleagues found that, in the absence of a uniform chemoattractant, actin polymerization and chemotactic motility signaling is greatest on the side of the cell exposed to higher concentrations of the chemical. Their work was published in Nature Communications this week (October 27).

“Detecting gradients turns out to be a two-step process,” study coauthor Chuan-Hsiang Huang explained in a statement. “First, the cell tunes out the background noise, and the side of the cell that is getting less of the chemical signal just stops responding to it. Then, the control center inside the cell ramps up its response to the message it’s getting from the other side of the cell and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery