Cellular Competence: Making Recombinant DNA Accessible

Coaxing bacteria into taking up recombinant DNA was arduous until Douglas Hanahan took action.

Written byNathan Ni, PhD
| 2 min read
Doug Hanahan worked at Cold Spring Harbor Laboratory in 1982.
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Recombinant DNA technologies developed in the early 1970s enabled scientists to isolate genes of interest and splice them into existing DNA structures. However, as late as the early 1980s, the molecular cloning process was horribly inefficient because it was difficult to integrate isolated genes with existing genomes. These challenges were unacceptable to Douglas Hanahan, currently director emeritus of the Swiss Institute for Experimental Cancer Research (ISREC) in the Swiss Federal Institute of Technology Lausanne (EPFL). To overcome them, he pioneered a new transformation method that now bears his name.1

In 1979, Hanahan joined Paul Doty’s laboratory at Harvard University to study techniques for cDNA cloning. “The goal was to first make recombinant DNA, convert it into cDNA using reverse transcriptase, then put it into plasmids, transform E. coli, and finally scale that up,” said Hanahan. However, his early forays met little success.

To complicate matters, Hanahan was caught in the midst of an ethical furor within the scientific community regarding the safety of recombinant DNA technology. “People were developing these techniques and realizing the power that they had to create any new gene,” said Rosemary Redfield of the University of British Columbia. “Scientists quickly said, ‘are we sure we want to do this?’ ” In particular, there was a fear that genetic material, once placed inside a host organism, might escape the laboratory and spread uncontrolled. People saw E. coli as a particular threat since it naturally populates the human intestinal tract.

“When I joined Harvard, recombinant DNA and cloning experiments had to be done in very specialized physical containment facilities that had only been used for very pathogenic viruses up until that point,” Hanahan recalled. Not only did Harvard University lack such a facility, but the city of Cambridge, Massachusetts had placed a moratorium on such research. Hanahan and his colleagues had to travel to Cold Spring Harbor Laboratory—a 225-mile journey—to do their work. “We’d drive down there, gown up, go into this special facility, and we basically got nothing. There were no positive colonies. This was pretty depressing.”

Hanahan started playing around with isolated plasmids and adding different things to cultures. Noting the prior discovery that the divalent cation calcium chloride rendered E. coli more permissive to DNA uptake (although the process was still inefficient), he started experimenting with other metal ions, as well as various combinations of ions, agents, and other factors such as plasmid sizes.2

“They were just empirical iterative combinatorial studies, mostly involving cocktails of divalent or multivalent ions. But rendering E. coli competent really enabled molecular cloning to be feasible, and so the method was obviously widely adopted,” said Hanahan. He eventually improved DNA uptake efficiency by ten-thousand-fold or more.

Hanahan’s method for improving DNA uptake played a large part in making recombinant DNA technology accessible. “Competent E. coli have become a mainstay across the life sciences,” Hanahan noted. “It spawned a whole research product industry with all of these different companies following my protocols and producing competent E. coli to sell to others.”

Correction notice (July 17): The text has been updated to more accurately reflect the rationale behind Hanahan's experimentation with other metal ions.

  1. M.R. Green, J. Sambrook, “The Hanahan method for preparation and transformation of competent Escherichia coli: High-efficiency transformation,” Cold Spring Harb Protoc, 2018(3), 2018.
  2. D. Hanahan, “Studies on transformation of Escherichia coli with plasmids,” J Mol Biol, 166(4):557-80, 1983.

Related Topics

Meet the Author

  • Nathan Ni, PhD Headshot

    Nathan Ni earned a PhD in Physiology from Queen's University in 2013, where he investigated the role of inflammatory leukotriene pathways in myocardial infarction. He then underwent a two-year postdoctoral training stint at Toronto's University Health Network, where he looked at the effects of aging on stem cell effectiveness. Nathan joined The Scientist’s Creative Services Team in December 2016 and is currently an Associate Science Editor.

    View Full Profile

Published In

June 2023 cover
Summer 2023

Divvying Up Duties

Bacteria cooperate to benefit the collective, but cheaters can rig the system

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery