CRISPR/Cas9 genome editing technology has introduced valuable versatility in the design of pre-clinical animal models for functional genomics research. Accuracy, timing, and flexibility with CRISPR component delivery is especially critical in neuroscience and behavior research. The production of interpretable data often relies on genetic manipulation at specific stages of development or behaviors.1 Stereotaxic techniques have long been used for investigations of the brain, and their combination with site-specific infusion apparatuses are essential to efficient delivery for targeted genome editing.
CRISPR Defined
The RNA-guided endonuclease, Cas9, of the Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) bacterial adaptive immune system, is the crux of this genetic engineering tool. In short, a pre-designed guide RNA (gRNA) directs Cas9 to generate site-specific DNA double-stranded breaks (DSBs) that are mended ...