Chlamydial evolution probed

Species evolved within primitive eukaryotic cells and had virulence factors now widespread

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The last common ancestor of the Chlamydiales group of bacteria lived about 700 million years ago inside a eukaryotic host cell, according to a new study. This primeval chlamydia encoded many virulence factors now found in modern pathogenic chlamydiae as well as in Salmonella and Escherichia coli, according to the authors of the paper in Science published on April 8, 2004.

Matthias Horn and colleagues at the University of Vienna used the genome sequence of the group's recently discovered closest living relative—an endosymbiotic chlamydia living in amoebae—to reconstruct the genetic makeup of the last common ancestor. Among the species' virulence factors, now found in a wide range of bacterial pathogens, was a type III secretion system—a mechanism by which bacteria can inject their proteins into host cells in order to force the host cells do something to the bacteria's advantage.

Horn showed that the sequence of the symbiotic chlamydia had ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH