Circadian Clock and Aging

Whether a critical circadian clock gene is deleted before or after birth impacts the observed aging-related effects in mice.

head shot of blond woman wearing glasses
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAEmbryonic deletion of a core circadian clock gene, Bmal1, leads to problems associated with accelerated aging in adult mice, including neurodegeneration, poor hair growth, eye and bone pathologies, and a decreased lifespan. Yet mice in which the gene is knocked out after birth don’t exhibit many of these aging-related phenotypes, according to a study published today (February 4) in Science Translational Medicine. The results suggest that the circadian clock gene plays different roles during embryogenesis and after birth.

“This is a thorough and well-conducted study,” said Ghislain Breton, who studies the circadian system at the University of Texas Health Science Center in Houston, but was not involved in the work. “The lesser phenotype when you disrupt Bmal1 after birth is very intriguing,” he continued. “It means that certain early developmental stages are likely more sensitive to circadian clock disruptions compared to adulthood.”

“What is really important about this work is that the longevity is normal in the [postnatal Bmal1 knockout] mice,” said Marina Antoch, a professor of oncology at the Roswell Park Cancer Institute in Buffalo, New York, who was not involved in the research.

Circadian clocks regulate the physiology and behavior of many organisms. Disruption of key circadian clock regulators is known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo