Circadian-Controlled Thirst

Scientists determine how the brain’s central clock regulates drinking prior to sleep in rodents.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, TIIA MONTOIn mice, just before bedtime, neurons of the master circadian clock release the neurotransmitter vasopressin to activate the brain’s thirst center and prompt the animals to drink, according to a paper published today (September 28) in Nature. The study represents the first mechanical description of how this clock drives behavior in mammals.

“The big issue that [the authors] tap into is how the circadian clock communicates with the rest of the brain and the body,” said chronobiologist Michael Antle of the University of Calgary, Canada, who was not involved in the study. “We know we’ve got this clock, we know it regulates our behavior and physiology . . . but we didn’t know how it did,” he added. “[The authors] have done a fantastic job of chasing down this issue, and I was really impressed by their thoroughness.”

Sleeping, eating, body temperature, urinating—there is a long list of behaviors and physiological processes in mammals that are governed in part by circadian regulation. Each of these is ultimately controlled by the brain’s master clock: the several thousand neurons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel