Designer DNA

Computational tools for mapping out synthetic nucleic acids

Written byRachel Berkowitz
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© BRYAN SATALINOWhen James Watson and Francis Crick announced in 1953 that they had determined the double-helical structure of DNA, the letters G, T, A, and C were forever embedded in the collective mind of the biology world. The arrangement of these four nucleotide bases in a strand of DNA dictates the sequence of an organism’s every protein.

These days, synthetic biologists can treat those four bases as the programming language underlying protein design. The field is grappling with how best to manipulate this blueprint that “makes a hummingbird into a hummingbird and not into a cow,” says Claes Gustafsson, cofounder of a bioengineering company called ATUM (formerly DNA2.0).

Scientists have known for decades how to manufacture DNA in the lab, in principle allowing them to manipulate life in ways that Watson and Crick couldn’t have imagined—inserting genes into bacteria, yeast cells, or algae to produce enzymes from different organisms, or encoding proteins that fold into shapes not found in nature.

But in practice, discerning the precise DNA sequence that gives rise to a certain protein, or predicting how a sequence will behave ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies