Designer DNA

Computational tools for mapping out synthetic nucleic acids

Written byRachel Berkowitz
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© BRYAN SATALINOWhen James Watson and Francis Crick announced in 1953 that they had determined the double-helical structure of DNA, the letters G, T, A, and C were forever embedded in the collective mind of the biology world. The arrangement of these four nucleotide bases in a strand of DNA dictates the sequence of an organism’s every protein.

These days, synthetic biologists can treat those four bases as the programming language underlying protein design. The field is grappling with how best to manipulate this blueprint that “makes a hummingbird into a hummingbird and not into a cow,” says Claes Gustafsson, cofounder of a bioengineering company called ATUM (formerly DNA2.0).

Scientists have known for decades how to manufacture DNA in the lab, in principle allowing them to manipulate life in ways that Watson and Crick couldn’t have imagined—inserting genes into bacteria, yeast cells, or algae to produce enzymes from different organisms, or encoding proteins that fold into shapes not found in nature.

But in practice, discerning the precise DNA sequence that gives rise to a certain protein, or predicting how a sequence will behave ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH