Designer DNA

Computational tools for mapping out synthetic nucleic acids

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© BRYAN SATALINOWhen James Watson and Francis Crick announced in 1953 that they had determined the double-helical structure of DNA, the letters G, T, A, and C were forever embedded in the collective mind of the biology world. The arrangement of these four nucleotide bases in a strand of DNA dictates the sequence of an organism’s every protein.

These days, synthetic biologists can treat those four bases as the programming language underlying protein design. The field is grappling with how best to manipulate this blueprint that “makes a hummingbird into a hummingbird and not into a cow,” says Claes Gustafsson, cofounder of a bioengineering company called ATUM (formerly DNA2.0).

Scientists have known for decades how to manufacture DNA in the lab, in principle allowing them to manipulate life in ways that Watson and Crick couldn’t have imagined—inserting genes into bacteria, yeast cells, or algae to produce enzymes from different organisms, or encoding proteins that fold into shapes not found in nature.

But in practice, discerning the precise DNA sequence that gives rise to a certain protein, or predicting how a sequence will behave ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Rachel Berkowitz

    This person does not yet have a bio.

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo