Desperately Seeking Shut-Eye

New insomnia drugs are coming on the market, but drug-free therapy remains the most durable treatment.

head shot of blond woman wearing glasses
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/GEORGE PETERSIn the early 1970s, a colleague of Stanford University’s William Dement remarked on the resemblance of a narcolepsy patient’s symptoms to those of a recent canine patient he had read about. The similarity of the symptoms—excessive daytime sleepiness, sudden switch from an awake state to rapid eye movement (REM) sleep, sleep paralysis, and muscle weakness called cataplexy—prompted psychiatrists at the center to track down a narcoleptic dog of their own to study, and then to gather a kennel full of such dogs to figure out what caused the disease. When Dement bred two affected Doberman pinschers in 1976, he found that their narcolepsy was genetic; many of the puppies had episodes of muscle cataplexy and would collapse into sudden sleep, especially when excited.

In 1986, Emmanuel Mignot came to Stanford to work with the narcoleptic dogs, first to evaluate the effects of different narcolepsy drugs and then to tease out the molecular basis of the disorder. More than a decade later he discovered an autosomal recessive mutation in the orexin receptor in the dogs’ brains that was responsible for the disorder (Cell, 98:365-76, 1999). (See “In Dogged Pursuit of Sleep.”) Although orexin receptor mutations have not been found in humans with narcolepsy, patients with the disorder do have reduced levels of orexin (also called hypocretin), a neuropeptide that regulates wakefulness (The Lancet, 355:39-40, 2000).

“The biological basis for orexin mediating wakefulness was pretty strong,” says Joseph Herring, neuroscientist and executive director of the clinical neuroscience program at Merck ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide