DNA Damage Scout

Researchers are beginning to appreciate a role for RNA polymerase beyond gene transcription.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

E. coli DnaG RNA polymerase domainWIKIMEDIA, LMO402Long known for its role in transcribing the genome’s code into messenger RNAs that can be translated into proteins, the enzyme RNA polymerase may also survey the genome for damage. That’s according to a study led by investigators at the New York University Langone Medical Center, which was published last month (January 8) in Nature. Biochemist Evgeny Nudler and his colleagues have described one way in which bacterial cells rely on RNA polymerase to start repairing DNA damage, which, the authors added, hint at pervasive transcription—the surprising revelation of noncoding RNA molecules and an axis of debate in molecular biology.

As RNA polymerases glide along strands of DNA transcribing them into new RNA molecules, the enzymes can at times get stuck when they encounter damage in the genome, like a zipper caught on a faulty tooth. “RNA polymerase gets stuck all the time,” explained Nudler. “It’s very picky.” While minor damage can cause the enzyme to merely pause briefly, major damage can stop it cold, disrupting gene expression and DNA replication.

One way to get RNA polymerase going again involves a molecule known as UvrD helicase. Through a series of in vitro and in vivo experiments, Nudler’s team showed how this molecule pulls the transcription enzyme back from the damage site by unwinding DNA strands. “Eight or 10 nucleotides back is enough to expose the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Andrew P. Han

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo