Double take

"I am now astonished that I began work on the triple helix structure, rather than on the double helix," wrote Linus Pauling in the April 26, 1974 issue of Nature. In February 1953, Pauling proposed a triple helix structure for DNA in the Proceedings of the National Academy of Sciences (PNAS). He had been working with only a few blurry X-ray crystallographic images from the 1930s and one from 1947. If history's helix had turned slightly differently, however, perhaps the following timeline might b

Written bySteve Mirsky
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

"I am now astonished that I began work on the triple helix structure, rather than on the double helix," wrote Linus Pauling in the April 26, 1974 issue of Nature.

In February 1953, Pauling proposed a triple helix structure for DNA in the Proceedings of the National Academy of Sciences (PNAS). He had been working with only a few blurry X-ray crystallographic images from the 1930s and one from 1947. If history's helix had turned slightly differently, however, perhaps the following timeline might be more than mere musing…

August 15, 1952: Linus Pauling (finally allowed to travel to England by a US State Department that thinks the words "chemist" and "communist" are too close for comfort) visits King's College London and sees Rosalind Franklin's X-ray crystallographs. He immediately rules out a triple helical structure for DNA and concentrates on determining the nature of what is undoubtedly a double helix.

February ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo