Drugged Fish Act Different

A psychiatric drug in the water can cause perch to be less social, more voracious hunters.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Perch.BENT CHRISTENSENAn anti-anxiety medication that has found its way from water treatment plants into ponds and streams of Europe may alter the behavior of perch even at low concentrations, according to a study published today (February 14) in Science. Fish exposed to the drug, called oxazepam, tended to eat more quickly and were more active and less social than they had been prior to drug exposure and compared with their unexposed peers.

“It’s definitely an interesting study,” said David Skelly, an ecologist at Yale University who was not involved in the research. “It’s joining a group of exposure studies that are showing very clearly that the individual chemicals that are showing up as environmental contaminants are ecologically relevant.”

Previously researchers have raised concerns about all manner of pharmaceuticals in the water, from estrogens suggested to cause reproductive abnormalities in frogs to psychoactive drugs linked to autism in fish. Oxazepam is a type of benzodiazepine, drugs that work by binding to GABA receptors and are used to treat anxiety. Since many animals have these receptors, it stands to reason that benzodiazepines might influence animal behavior, Brodin said, but they “weren’t being studied [in animals] in environmentally relevant quantities.”

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo