Ecology, Not Physics, Explains Diversity of Insect Eggs

Insect eggs can take any shape at almost any size, refuting explanations for their dimensions based on geometric scaling laws or on relationships between egg traits and adult traits.

Written byViviane Callier
| 6 min read
Oncopeltus fasciatus milkweed bug eggs

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: Milkweed bugs, Oncopeltus fasciatus, lay eggs that start as yellow and turn orange as the embryo develops inside. In the oldest eggs, the folded legs and two small red eyes of the soon-to-be hatchling can be seen peeking through the egg shell.
IMAGE BY SAMUEL CHURCH AND BRUNO DE MEDEIROS

The famed evolutionary biologist Leigh Van Valen once said that “evolution is the control of development by ecology.” Nowhere is that clearer than in a new database of measurements of more than 10,000 insect eggs of diverse sizes and shapes created by a team of researchers at Harvard University. In a study of the collection published today (July 3) in Nature, the researchers report that the habitat of where the eggs are laid—not geometric scaling laws that determine animals’ proportions or other life history traits—explains the diversity of egg size and shape across insects.

“The greatest merit of this study ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies