Electrical Bacteria

Individuals of a newly discovered microbe species line up end-to-end to form electron transport cables many times their length.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Cable bacteria in the mud of the sea bottom
Mingdong Dong, Jie Song and Nils Risgaard-Petersen
Bacteria living in sediments at the bottom of Aarhus Bay in Denmark can exchange electrons with other bacteria as far as 1 centimeter away—the equivalent of 12 miles if the bacteria were the size of people, Wired Science reported. The electrical signals are passed through long strands of the bacteria—a new species of the genus Desulfobulbaceae—that serve as transport cables for the community.

“To move electrons over these enormous distances in an entirely biological system would have been thought impossible,” co-author Moh El-Naggar, assistant professor of physics at the University of Southern California , said in a press release. But the bacteria seem built for the job. Cells line up end-to-end to form a single long filament. The outer surface of the cells are ribbed, and the researchers suspect these channels are what actually carry the electrons. Surrounding the channels is a membrane that may have insulating properites, like myelin sheaths of neurons.

The study, published yesterday (October 24) in Nature, adds to a growing body of literature on bacteria using electricity to communicate and survive. Earlier this year, Japanese researchers found that different species of microbes utilize ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer