Electrode-Free Electrophysiology

Optogenetics has evolved beyond its neuron-stimulating capacities to an all-optical approach for both manipulating and recording cells.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, CHEMPETITIVETen years ago, optogenetics started out as a means to stimulate neuronal activity without the use of electrodes: a genetically introduced light-sensitive membrane channel and a blue light could do the job. At the Society for Neuroscience (SfN) meeting in Chicago this week, scientists announced new techniques for recording neurons optically, as well, obviating the need for invading cells or tissues with electrical probes altogether.

The basic approach is to express genes for a light-sensitive channel and an optical reporter in the same cell. For instance, researchers have succeeded in using genetically introduced calcium indicators, which signal action potentials, to record cell activity upon optogenetic stimulation.

To get an even more refined look at cell activity, particularly at the sub-action potential level, Adam Cohen’s team at Harvard University has developed an optical voltage indicator, called QuasAr, which glows in the near infrared upon changes in cellular voltage (voltage indicators act on a much faster time scale than calcium indicators). Along with Ed Boyden’s lab at MIT, Cohen developed a new channelrhodopsin that’s extremely sensitive to blue light and introduced it into cells along with QuasAr, allowing the researchers to stimulate ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH