Electron Transfer Dissociation

Collision-activated dissociation (CAD), the most widely used peptide ion fragmentation technique for peptide sequence analysis by tandem mass spectrometry, works great for small peptides but is problematic for labile posttranslational modifications (PTMs). In the last decade, researchers have developed an alternative, electron capture dissociation (ECD), which involves reacting multiply-p


Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Collision-activated dissociation (CAD), the most widely used peptide ion fragmentation technique for peptide sequence analysis by tandem mass spectrometry, works great for small peptides but is problematic for labile posttranslational modifications (PTMs). In the last decade, researchers have developed an alternative, electron capture dissociation (ECD), which involves reacting multiply-protonated peptides with thermal electrons, and provides random cleavage of the peptide backbone while leaving most labile PTMs attached and intact. The drawback: Mixing cations and electrons requires a high magnetic field, only present in Fourier transform ion cyclotron resonance mass spectrometers, which few labs can afford.

Another group has since developed an ion/ion analog of ECD, electron transfer dissociation (ETD), that is compatible with widely used and more affordable RF ion trap mass analyzers. Ion traps' radio frequency (RF) electric fields can confine both cations and anions, but not cations and vastly lighter electrons, so ETD uses specially-chosen anions to act ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development