Electron Transfer Dissociation

Collision-activated dissociation (CAD), the most widely used peptide ion fragmentation technique for peptide sequence analysis by tandem mass spectrometry, works great for small peptides but is problematic for labile posttranslational modifications (PTMs). In the last decade, researchers have developed an alternative, electron capture dissociation (ECD), which involves reacting multiply-p

Written byThe Scientist
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Collision-activated dissociation (CAD), the most widely used peptide ion fragmentation technique for peptide sequence analysis by tandem mass spectrometry, works great for small peptides but is problematic for labile posttranslational modifications (PTMs). In the last decade, researchers have developed an alternative, electron capture dissociation (ECD), which involves reacting multiply-protonated peptides with thermal electrons, and provides random cleavage of the peptide backbone while leaving most labile PTMs attached and intact. The drawback: Mixing cations and electrons requires a high magnetic field, only present in Fourier transform ion cyclotron resonance mass spectrometers, which few labs can afford.

Another group has since developed an ion/ion analog of ECD, electron transfer dissociation (ETD), that is compatible with widely used and more affordable RF ion trap mass analyzers. Ion traps' radio frequency (RF) electric fields can confine both cations and anions, but not cations and vastly lighter electrons, so ETD uses specially-chosen anions to act ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel