Engineered Bacteria Build Carbon-Silicon Bonds

Researchers tweak bacterial proteins, turning them into powerful enzymes capable of producing silicon-carbon compounds naturally and more efficiently than manmade catalysts.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Silicone caulk, commercial sealants, are mainly composed of organosilicon compounds.WIKIMEDIA, ACHIM HERINGSilicon is one of the most abundant elements on Earth, and silicon-carbon compounds are crucial for pharmaceutical development and computer technology. Yet “no living organism is known to put silicon-carbon bonds together,” said Jennifer Kan, a postdoc at Caltech, in a press release. Now, a November 24 Science study coauthored by Kan has shown that living Rhodothermus marinus cells can be coaxed into manufacturing these coveted bonds.

Kan and colleagues made use of directed evolution, artificially selecting for only the most powerful R. marinus enzymes. In this case, the researchers started with cytochrome c, a protein that shuttles electrons between proteins and produces occasional carbon-silicon bonds, mutating its DNA until they produced an enzyme that can catalyze silicon-carbon bond formation 15 times more efficiently—and with fewer waste products—than chemical catalysts on the market.

“This iron-based, genetically encoded catalyst is nontoxic, cheaper, and easier to modify compared to other catalysts used in chemical synthesis,” Kan said in the release. “The new reaction can also be done at room temperature and in water.”

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Joshua A. Krisch

    This person does not yet have a bio.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis