Engineered Microbe Could Ease Switch to Grass

Researchers modify a heat-loving bacterium so it can produce biofuel from switchgrass directly, with no need for costly chemical and enzymatic treatments.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

USDA-NRCS PLANTS DATABASE, ROBERT H. MOHLENBROCK Researchers from the University of Georgia and at Tennessee’s Oak Ridge National Laboratory have engineered the thermophilic bacterium Caldicellulosiruptor bescii to directly convert switchgrass into ethanol, according to a study published today (June 2) in PNAS. The new approach eliminates the need for expensive chemical and enzymatic treatments required to prepare grasses for ethanol production, potentially easing the way for use of sustainable feedstocks like switchgrass to produce biofuels.

“It’s a novel approach to turning cellulose into ethanol,” said David Tilman, an ecologist at the University of Minnesota who was not involved in the study. But the approach is not yet commercially viable, he added: “The alcohol production is way too low, but it’s something that can be worked on and developed.”

“It’s a very well-designed set of experiments that really elucidate the potential of where to go for the next steps,” said Jim McMillan, the chief engineer at the National Renewable Energy Laboratory’s National Bioenergy Center in Golden, Colorado.

Ethanol, a liquid biofuel that is mixed into most gasoline in the U.S., can be created from the glucose stored in plants. Most U.S. ethanol comes from the starchy, edible portion of corn, which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies