Epigenetics Play Cupid for Prairie Voles

Females of the pair-bonded rodent species become attached to their lifelong mates following histone modifications near oxytocin and vasopressin receptor genes.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ZUOXIN WANGThe mechanism behind prairie voles’ lifelong social monogamy is partly epigenetic, according to a paper published today (June 2) in Nature Neuroscience. Female prairie voles become bonded to their mates for life following the acetylation of histones in a brain region called the nucleus accumbens. The acetylation takes place near the promoter regions of genes encoding oxytocin and vasopressin receptors, molecules that have previously been associated with prairie vole pair-bonding.

“It’s the first time anyone’s shown any epigenetic basis for partner preference,” said Jeremy Day, a neuroepigeneticist at the University of Alabama at Birmingham who was not involved in the study.

Mohamed Kabbaj, a neuroscientist at Florida State University and an author of the paper, said that work in other species gave him clues that epigenetics could be important for social behavior. For instance, previous work suggests that modifications are involved in bonds between mothers and offspring in rats.

To test whether acetylation was involved in pair bonding in prairie voles, Kabbaj and colleagues injected trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs), into the prairie voles’ brains. Under ordinary circumstances, sexually naïve prairie voles only mate and form pair bonds after being placed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research