Epigenetics Play Cupid for Prairie Voles

Females of the pair-bonded rodent species become attached to their lifelong mates following histone modifications near oxytocin and vasopressin receptor genes.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ZUOXIN WANGThe mechanism behind prairie voles’ lifelong social monogamy is partly epigenetic, according to a paper published today (June 2) in Nature Neuroscience. Female prairie voles become bonded to their mates for life following the acetylation of histones in a brain region called the nucleus accumbens. The acetylation takes place near the promoter regions of genes encoding oxytocin and vasopressin receptors, molecules that have previously been associated with prairie vole pair-bonding.

“It’s the first time anyone’s shown any epigenetic basis for partner preference,” said Jeremy Day, a neuroepigeneticist at the University of Alabama at Birmingham who was not involved in the study.

Mohamed Kabbaj, a neuroscientist at Florida State University and an author of the paper, said that work in other species gave him clues that epigenetics could be important for social behavior. For instance, previous work suggests that modifications are involved in bonds between mothers and offspring in rats.

To test whether acetylation was involved in pair bonding in prairie voles, Kabbaj and colleagues injected trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs), into the prairie voles’ brains. Under ordinary circumstances, sexually naïve prairie voles only mate and form pair bonds after being placed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies