Evolution of Kin Discrimination

A bacterium’s ability to distinguish self from non-self can arise spontaneously, a study shows, reigniting questions of whether the trait can be considered an adaptation.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

M. xanthus fruiting bodiesFRANCESCA FIEGNAKin discrimination, in which an organism favors genetically related individuals over non-related individuals in social behaviors, can emerge among related bacterial strains that evolved from a common ancestor and were cultured under different laboratory conditions, according to a study on the social bacterium Myxococcus xanthus published today (July 6) in PNAS.

“Often when we see these kinds of social incompatibilities, or greater cooperation between close relatives than between strangers, it’s interpreted in the context of kin selection theory, which posits that cooperation—at least within species—will evolve when there’s preferential interactions that occur between relatives that share genes for cooperation,” said Gregory Velicer of ETH Zürich, who led the work. “[We have found that] reduced cooperation between different types can arise not because of any selection for incompatibility, per se, but rather simply because you had these different complex social systems evolving independently of one another.”

Under certain conditions, genetically identical colonies of M. xanthus swabbed on opposite ends of an agar plate grow toward one another, merging to form a single colony. But as Velicer and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery