Evolving Pain Resistance

Grasshopper mice harbor mutations in a pain-transmitting sodium channel that allow them to prey on highly toxic bark scorpions.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A southern grasshopper mouse appr oaches and prepares to attack an Arizona bark scorpion. COURTESY OF MATTHEW AND ASHLEE ROWEGrasshopper mice of the southwestern US deserts (Onychomys torridus) have evolved to take advantage of a normally well-protected food source: the Arizona bark scorpion (Centruroides sculpturatus), which produces a toxic, pain-inducing venom that deters most predators. Thanks to a few amino acid changes in a pain-transmitting sodium channel, however, grasshopper mice can consume the venomous arthropods while feeling little or no pain from their sting, according to research published today (October 24) in Science.

“The grasshopper mouse has found a way, very cleverly, to disconnect the pain pathway,” said neuroscientist Thomas Park of the University of Illinois at Chicago, who was not involved in the research. Importantly, he added, this pain resistance is specific to the venom; the mice are still able to feel pain from other stimuli. “There are very useful aspects of pain, [so] you don’t want to be completely insensitive,” he said.

Evolutionary neurobiologist Ashlee Rowe began studying the grasshopper mouse and its bark scorpion prey as a graduate student at North Carolina State University. Early on, she noticed that the mice seemed to be resistant to the scorpion’s sting. “The venom seems to have absolutely no effect whatsoever,” said Rowe, who is now an assistant ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH