Wrangling Retrotransposons

These mobile genetic elements can wreak havoc on the genome. Researchers are now trying to understand how such activity contributes to the aging process.

Written byMichael Van Meter, Andrei Seluanov, and Vera Gorbunova
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© IKON IMAGES/CORBIS

Genomes are hotbeds of evolutionary conflict. Perhaps nothing speaks to this idea better than the war raging between retrotransposons and their host genomes. Retrotransposons, often referred to as jumping genes, are mobile genetic elements that parasitize host machinery to replicate themselves across the genome. Since their emergence more than 100 million years ago, retrotransposons have been enormously successful. Modern mammalian genomes, for example, are riddled with the scars of these copy-and-paste events, with retrotransposon-derived DNA now accounting for nearly 50 percent of the human genome.

The most dangerous retrotransposon in mammalian genomes is the long interspersed nuclear element-1 (LINE-1 or L1). L1 retrotransposons are a little more than 6 kilobases long and encode an RNA-binding protein and an endonuclease with reverse-transcriptase activity that allow the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH