Fish of Many Colors

Researchers seek insight into the pigmentation patterns of guppies and zebrafish.

Written byAbby Olena, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Male guppyEUREKALERT, ANNA PRICEMale guppies’ vibrant colors and the yellow and black stripes that give the zebrafish its name are both products of pigment cells. Two research groups have now learned more about how these cells are organized to form these characteristic patterns.

In work published in PLOS One this week (January 22), a team from the Max Planck Institute for Developmental Biology in Tübingen, Germany, showed that at least two of three types of pigment cells—melanophores, xanthophores, and iridophores—contribute to male guppies’ colors. Using electron microscopy, the researchers found that pigment layers in both the dermis and hypodermis played a role in generating the fishes’ spots. Iridophores were present in each color trait the researchers studied, which they wrote suggested “that complex interactions between different chromatophore types both may be involved in establishing color patterns and [enhancing] color signals.”

Meanwhile, Hiroaki Yamanaka and Shigeru Kondo of Osaka University in Japan investigated the formation of the zebrafish’s stripes, which the literature suggests are generated by the interactions of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies