Flow Cytometry On-a-Chip

Novel microfluidic devices give researchers new ways to count and sort single cells.

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

IT’S MAGNETIC: Hakho Lee’s CTC counter features eight micro-Hall elements (yellow crosses, above), staggered to maximize detection accuracy. Flowing “sheath fluid” focuses the cells (right), while architectural elements in the channel (chevrons) force them towards the bottom of the channel. A photo of the physical chip is shown at top right.D. ISSADORE ET AL., SCIENCE TRANSL MED, 4:141ra92, 2012. Originally an immunology tool and a fixture of cell biology research for decades, flow cytometry allows users to catalog a dozen or more molecular and physical features in a single cell. A related, more sophisticated instrument, the fluorescence-activated cell sorter (FACS), enables researchers to isolate particular cells from heterogeneous populations.

These instruments have had a profound impact on biological research. Yet there is much they cannot do. For instance, with some exceptions, they can only count or sort cells based on their protein content. Thus, researchers cannot easily use the technique to identify cells that contain, say, specific mutations. Researchers also have to know in advance what molecules they are looking for, and have fluorescently labeled antibodies available to target them. And because the method depends on antibody binding to surface receptors, there’s always the possibility that sorted cell populations will be activated or altered by the process itself.

“For the most part, flow cytometry is used when you have a good affinity assay—an antibody or oligomer probe that can specifically label your cell type,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform