Further Evidence that Life Might Have Started with RNA

Researchers show how RNA bases could self-assemble in conditions that might resemble Earth’s primordial soup.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A single RNA strand folded on itself with nucleobases (green) and a ribose-phosphate backbone (blue)WIKIMEDIA, VOSSMANRNA consists of a phosphate backbone, sugar, and four bases (A, U, C, G), and has long seemed a promising candidate for early life’s precursor, because of its information-storing capacity and potential to act as a catalyst for certain chemical reactions. But it has been unclear how RNA’s two larger, purine bases (A and G) might have assembled in the conditions present on early Earth. Now, researchers in Germany provide the first demonstration of these bases’ formation from simple media. The team’s findings were published on Wednesday (May 12) in Science.

“We now have a pathway that would allow us to use simple molecules that were likely present on the early Earth,” study coauthor Thomas Carell of Ludwig-Maximilians-Universität München told New Scientist, adding that the next step will be to join those bases into an RNA strand.

Researchers at the University of Manchester in the U.K. demonstrated in 2009 that RNA’s two smaller pyrimidine bases (C and U) could emerge from relatively simple chemicals. In the current study, the Munich-based team revealed a series of chemical reactions leading from similarly simple compounds that readily react in water, such as amines and acids, to large quantities of purine bases. “It’s like a domino cascade,” Carell told Science.

Origins-of-life researcher Gerald Joyce of the Scripps Research Institute in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control