Genetic Connections Among Human Traits

A study identifies genetic variants that are linked to multiple phenotypes.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, MIKI YOSHIHITOTo understand the genetic underpinnings of human phenotypes, scientists can scan thousands of genomes to identify common variants among people with particular traits, an approach known as genome-wide association studies (GWASs). In a new study published today (May 16) in Nature Genetics, researchers combined data from more than 16 GWASs as well as from 23andMe’s database to discover novel gene-trait associations. But the researchers also added an extra layer of analysis, pooling 42 seemingly different traits—including diseases—to uncover phenotypes that may be causally linked.

“Our idea was to try to gather up all the traits that have been studied in large genetic studies and see if there is shared biology between these different traits that seem unrelated,” study coauthor Joseph Pickrell of the New York Genome Center in New York City told The Scientist.

“It’s a smart use of available data,” said Matthew Rockman, an evolutionary biologist at New York University who was not involved in the work. Because human data are formatted to prevent identification of individual subjects, such datasets “can be really difficult to combine in a sensible way,” he added.

To gather such data, Pickrell and his colleagues turned to publicly available, large consortium studies. They also gathered previously unpublished data gathered by the consumer genetics ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform