Genetic secrets of good wine

Spain and Canada work together to identify genomic determinants of what makes quality wine

Written byXavier Bosch
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Discovering the genetic secrets of good wine is at the heart of a project launched by Spanish and Canadian scientists, who are conducting the first large-scale, integrated genomics effort focused on single-model cultivars for wine and table grapes.

The genetic determinants of grape quality are practically unknown, and how local environmental factors interact at the cellular and molecular levels to cause differences in fruit quality is not understood.

“Understanding grapevine genomics is now a prerequisite to further improvement of viticultural practices as well as for the development of new varieties through breeding programs and adapting the best clones to the most suitable vineyard environments,” José Miguel Martínez-Zapater, the Spanish coordinator of the project at Madrid's National Center of Biotechnology, told The Scientist.

The grape genomics project, funded by Genome Spain and Genome Canada, is meant to elucidate developmental and metabolic pathways underlying grape development and quality traits and predict how ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH