Genetic Test Solves Royal Mystery

Genetic analyses lay to rest conspiracy theories about death of Belgian King Albert I, who lost his life in a rock climbing accident more than 80 years ago.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

LONG LIVE THE KING: Conspiracy theories about the death of King Albert I of Belgium are being laid to rest thanks to modern genomic technology.© WIKIMEDIA COMMONS/LIBRARY OF CONGRESSIn 1934, King Albert I of Belgium died in a rock-climbing accident at the age of 58. Eighty years later, Belgian TV journalist Reinout Goddyn purchased some bloodstained leaves supposedly collected from the site of the accident after the body was discovered in the middle of the night. He wanted to settle the conspiracy theories that circulated after the king’s death, which no one had witnessed.

In 2014, Goddyn reached out to Dieter Deforce, director of the Laboratory of Pharmaceutical Biotechnology, Forensic DNA, at the University of Ghent, Belgium. “He asked if I could do a DNA analysis to prove if it was the blood of the king or not,” recalls Deforce, who was hesitant to help because doing so would require a sample from one of the king’s relatives. Given ongoing legal proceedings regarding a woman who claimed to be the daughter of King Albert II, Deforce decided to steer clear of Belgian royalty’s genetic data. But he told Goddyn that he could test the bloody leaves to see if the DNA was human or not. Deforce performed genomic and proteomic analyses and demonstrated that the blood from the leaves ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research