Genetic Test Solves Royal Mystery

Genetic analyses lay to rest conspiracy theories about death of Belgian King Albert I, who lost his life in a rock climbing accident more than 80 years ago.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

LONG LIVE THE KING: Conspiracy theories about the death of King Albert I of Belgium are being laid to rest thanks to modern genomic technology.© WIKIMEDIA COMMONS/LIBRARY OF CONGRESSIn 1934, King Albert I of Belgium died in a rock-climbing accident at the age of 58. Eighty years later, Belgian TV journalist Reinout Goddyn purchased some bloodstained leaves supposedly collected from the site of the accident after the body was discovered in the middle of the night. He wanted to settle the conspiracy theories that circulated after the king’s death, which no one had witnessed.

In 2014, Goddyn reached out to Dieter Deforce, director of the Laboratory of Pharmaceutical Biotechnology, Forensic DNA, at the University of Ghent, Belgium. “He asked if I could do a DNA analysis to prove if it was the blood of the king or not,” recalls Deforce, who was hesitant to help because doing so would require a sample from one of the king’s relatives. Given ongoing legal proceedings regarding a woman who claimed to be the daughter of King Albert II, Deforce decided to steer clear of Belgian royalty’s genetic data. But he told Goddyn that he could test the bloody leaves to see if the DNA was human or not. Deforce performed genomic and proteomic analyses and demonstrated that the blood from the leaves ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies