Genome Sequencing Standards

The US National Institute of Standards and Technology develops a reference sample to check the validity of genetic sequences.

kerry grens
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

PIXABAY, PUBLICDOMAINPICTURESTo create uniformity in the genomic testing industry, the US National Institute of Standards and Technology (NIST) has created a reference human genome that can be used as a control to ensure that sequencing is done reliably.

“If you send a sample of blood or a tumor biopsy to different genetic testing laboratories, you can get different results,” Marc Salit, the leader of a genome measurement group at the institute, told The New York Times. “While largely in agreement, they may have significant differences. Now, for the first time, we have a standard to check the reliability and quality of gene sequencing.”

The reference sample, designed to be used in next-generation sequencing, costs $450. While available to anyone who would like to purchase it, companies that perform such sequencing are not required to consult the reference. “This gives someone a chance to tell how well their sequencers are working,” NIST representative Michael Newman told GenomeWeb. “The standards are set so if they ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio