Genomic Elements Reveal Human Diversity

Duplication of copy number variants may be the source of greatest diversity among people, researchers find.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

World map with geographic coordinates of populations sampled in the study.PETER H. SUDMANTGenetic differences among ethnically diverse individuals are largely due to structural elements called copy number variants (CNVs), according to a study published today (August 6) in Science. Compared with other genomic features, such as single nucleotide variants (SNVs), CNVs have not previously been studied in as much detail because they are more difficult to sequence. Covering 125 distinct human populations around the world, geneticist Evan Eichler at the University of Washington in Seattle and an international team of colleagues studied the genomes of 236 people—analyzing both SNVs and CNVs.

“The take-home message is that we continue to find a lot more genetic variation between humans than we appreciated previously,” Eichler told The Scientist.

“This is a really exciting study of CNVs in worldwide human populations and has a much finer resolution than what had been done before,” said Kirk Lohmueller, who studies human genetic variation at the University of California, Los Angeles, and was not involved in the work.

Classified as deletions or duplications, CNVs are genomic loci that can greatly vary in the number of copies, and are often located in regions of highly repetitive content, making them more difficult to sequence compared to SNVs. Thus far, the vast majority of human genome analyses—including from the Human Genome Project and the 1,000 Genomes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research