Gut Feeling

Sensory cells of the mouse intestine let the brain know if certain compounds are present by speaking directly to gut neurons via serotonin.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse intestineWIKIMEDIA, KELVINH88The intestine tells the brain about the contents of the gut. But insights into the molecular mechanics of this gut-brain conversation have been stalled by technical limitations. Now, examinations of a key type of gut sensory cell within mouse intestinal organoids and tissue sections have revealed which molecular signals activate these so-called enterochromaffin cells, and how the cells relay the compounds’ presence to the central nervous system. The findings are reported today (June 22) in Cell.

“It really is stellar work,” says anatomist and neuroscientist John Cryan of University College Cork in Ireland who was not involved in the work. “It’s asking a big question, and using state of the art tools [to find answers] . . . It’s a tour de force.”

The big question to which Cryan refers is, what is the function of enterochromaffin cells? “We’ve known that these cells are really important but we’ve lacked the tools to study them,” he says, “They’ve been a real black box.”

Enterochromaffin cells are a type of intestinal epithelial endocrine cell. They are very rare—making up less than one percent of the intestinal epithelia—and yet are responsible for the production of 90 percent of the body’s serotonin. It has been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies