Hidden Treasures

Tiny genes that control fly and human heartbeats hint at a trove of ignored but important sequences.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human sarcolipin (top) and fruit fly sarcolamban (bottom) proteins MAGNY ET AL, 2013The regular heartbeats of humans and fruit flies both depend on tiny genes that have gone unnoticed because of their small size. They encode proteins with just 30 amino acids or fewer, and belong to an enigmatic group of sequences called small open reading frames (smORFs).

The human genome contains thousands of smORFs but their size makes them hard to identify and characterize. With a few exceptions, no one knows what they do. But by showing that the homologous smORFs control human and fly hearts—a role retained over 550 million years of evolution—Juan Pablo Couso from the University of Sussex has made a compelling case that these tiny genes are important players that deserve more attention. His study is published today (22 August) in Science.

“There could be thousands of these things that need to be isolated, described, and studied,” said Couso. “I think it’s amazing that we have missed them until now.”

Most human proteins are around 500 amino acids long, while smORFs, by definition, encode proteins with 100 amino ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies