High-Density Info

New developments in protein array technology

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

BUILT ON THE SPOT: Purified template DNA is printed onto a slide along with bovine serum albumin and an antibody that recognizes glutathione-S-transferase (GST). The DNA template contains both the gene for the protein of interest and for GST (left). LaBaer isn’t sure why bovine serum albumin helps, but it seems to hold the DNA to the surface without inhibiting transcription and may provide some degree of background suppression. Transcription and translation is initiated by the addition of a cell extract, and the protein self-assembles (middle). The GST-tagged protein is then captured by an anti-GST antibody (right).ADAPTED FROM WIKIPEDIA/SIMIN LIM

Thirty years after it came into use, the protein microarray—a high-throughput tool that tracks the presence, activity, and interactions of proteins—is still going strong, even as its DNA counterpart is being replaced by next-generation sequencing. Protein arrays are workhorses in biomarker discovery, immune-response monitoring, and other areas of biology.

Traditional protein microarrays—slides, beads in a liquid, or plates that are specked with hundreds or thousands of proteins, probed and analyzed, often with fluorescent labels—allow an unbiased look at protein function. Unlike other proteomics techniques, arrays immobilize even low-abundance proteins. “The nice thing about protein arrays is that every protein gets its chance. Every protein is there at reasonable levels,” says Josh LaBaer, director of the Virginia G. Piper Center for Personalized Diagnostics at Arizona State ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH