High-Tech Choir Master

Elaine Mardis can make DNA sequencers sing, generating genome data that shed light on evolution and disease.

Written byKaren Hopkin
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

BILL SAWALICH/BARLOW PRODUCTIONSElaine Mardis was in the right place at the right time. During her senior year as a zoology major at Oklahoma University, Mardis found herself at loose ends. “It wasn’t readily apparent to me what to do next,” she says. “Then I took a biochemistry class—and the instructor was one Bruce A. Roe. He started teaching us about this incredible world of molecular biology and it really opened my eyes. Very quickly, fruit fly genetics—which is what I was doing for my honors thesis—began to seem pretty mundane and boring, compared to working with DNA and enzymes at a molecular level.”

Mardis graduated in 1984, and Roe convinced her to apply for graduate school—and to join his lab. “He was transitioning away from being a tRNA guy to becoming more active in DNA sequencing. I didn’t realize it at the time, but Bruce had learned DNA sequencing directly from Fred Sanger.” By the time Mardis had finished her coursework and was ready to knuckle down in the lab, a company called Applied Biosystems came out with the first commercially available DNA sequencer that used fluorescence instead of radiolabeled nucleotides. “Bruce, by a variety of surreptitious means that weren’t entirely clear, found $100,000, flew out to California, and brought back the second instrument that Applied Biosystems produced.” Mardis jumped in with both feet. “Some of the first ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies