How Caffeine Affects the Body Clock

Evening consumption of the drug leads human circadian rhythms to lag.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, JULIUS SCHORZMANCoffee, tea, and other caffeinated drinks can make a person feel more awake and alert, but new research suggests that, when consumed in the evening, caffeine might also delay the body’s internal clock. A paper published in Science Translational Medicine today (September 16) shows that people given a dose of caffeine a few hours before their normal bedtimes exhibited a delay in their circadian rhythms of more than half an hour.

“We already knew that caffeine is a stimulant and can keep you awake and make it difficult to fall asleep at night if taken too close to bedtime,” said behavioral neurologist Charmane Eastman of Rush University in Chicago, who was not involved in the work. “This study shows that caffeine can also make your internal circadian body clock later, which could make it difficult to fall asleep the next night even if you don’t take caffeine again.”

A person’s circadian rhythms are established by a variety of temporal cues such as sunrise and sunset, feeding times, body temperature fluctuations, and levels of certain hormones. And resisting these cues is hard. Many people’s sleep and daily routines are disturbed by the one-hour shift to daylight saving, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control