How Chameleons Change Colors

Tunable photonic crystals cause chameleons’ quick shifts in skin shades.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

NATURE COMMUNICATIONS, J. TEYSSIER ET AL. Chameleon colors aren’t just for camouflage. When panther chameleons (Furcifer pardalis) in Madagascar fight over territory, a dazzling display precedes their contests: resting males, typically green and inconspicuous, turn yellow or orange; red patches on their bodies can brighten, and blues can fade to whitish tints. The color changes, which are completely reversible and occur within minutes, are not the result of shifts in pigments alone. Results published today (March 10) in Nature Communications suggest they are the result of quick changes to light-reflecting guanine nanocrystals, which create structural color within chameleon skin.

Two layers of cells known as iridophores contain these nanocrystals. A superficial layer, known as S-iridophores, actively alters the spacing of these crystals to cause the rapid color changes, while a deeper layer, made up of D-iridophores, reflects a broader spectrum of light near the infrared wavelengths. In addition to camouflage and flashy fights, these cells may play a key part in keeping these lizards cool.

“People generally assume that color change in chameleons is well understood, and I don’t think it is at all,” said Randall Morrison of McDaniel College in Maryland who was not involved with the study. “This whole notion of the tunable photonic crystals is a new way to look at physiological color change in animals.”

Michel Milinkovitch of the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo