How Chameleons Change Colors

Tunable photonic crystals cause chameleons’ quick shifts in skin shades.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

NATURE COMMUNICATIONS, J. TEYSSIER ET AL. Chameleon colors aren’t just for camouflage. When panther chameleons (Furcifer pardalis) in Madagascar fight over territory, a dazzling display precedes their contests: resting males, typically green and inconspicuous, turn yellow or orange; red patches on their bodies can brighten, and blues can fade to whitish tints. The color changes, which are completely reversible and occur within minutes, are not the result of shifts in pigments alone. Results published today (March 10) in Nature Communications suggest they are the result of quick changes to light-reflecting guanine nanocrystals, which create structural color within chameleon skin.

Two layers of cells known as iridophores contain these nanocrystals. A superficial layer, known as S-iridophores, actively alters the spacing of these crystals to cause the rapid color changes, while a deeper layer, made up of D-iridophores, reflects a broader spectrum of light near the infrared wavelengths. In addition to camouflage and flashy fights, these cells may play a key part in keeping these lizards cool.

“People generally assume that color change in chameleons is well understood, and I don’t think it is at all,” said Randall Morrison of McDaniel College in Maryland who was not involved with the study. “This whole notion of the tunable photonic crystals is a new way to look at physiological color change in animals.”

Michel Milinkovitch of the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery