How Gastric Bypass Can Kill Sugar Cravings

A type of bariatric surgery eliminates gut-to-brain signals that trigger sugar highs, a mouse study shows.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, COSTAPPPRDopamine surges in the brain associated with eating sugary food are diminished in mice after surgery that bypasses their duodenums, according to a paper published today (November 19) in Cell Metabolism. The work provides a possible mechanism to explain the suppression of sweet cravings experienced by many bariatric surgery patients.

“The value of this paper, for me, is that it reveals more mechanistic insights into how the postprandial processing of calories by the gut can serve to activate brain reward systems involved in the formation of new preferences and habits,” said pharmacologist and neurobiologist Paul Kenny of Mount Sinai Hospital in New York who was not involved in the work.

It has long been appreciated that gastric bypass surgeries do more than simply physically limit the amount of food that can be ingested and absorbed by the patient. The procedures can also induce metabolic changes, such as improved glucose tolerance and lipid metabolism, as well as “psychiatric side effects,” such as appetite changes, and even depression and alcoholism, said anatomist and neurobiologist Daniele Piomelli of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies