How Genes from Neanderthals Predispose People to Severe COVID-19

Researchers dissect the Neanderthal-derived region on chromosome 3 that drives severe COVID-19 to zero in on the key causal variants.

Written byAlakananda Dasgupta
| 4 min read
Microscope image of A549-ACE2 lung cells coinfected with SARS-CoV-2 and a reporter vector containing a key regulatory variant of interest in the region on human chromosome 3
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

One of the biggest lingering questions surrounding COVID-19 is why some people with the disease get sicker than others. While many factors are likely at play, numerous studies suggest a person’s genetics can predispose them to severe disease. Indeed, a genome-wide association study and a COVID-19 Host Genetics Initiative dataset specifically point to a 50 kilobase-sized genomic segment on chromosome 3 as a major genetic risk factor for severe COVID-19—a segment that, back in 2020, paleogenomicist Svante Pääbo and his collaborator Hugo Zeberg showed was inherited from Neanderthals some 50,000 to 70,000 years ago. However, the genetic variants on this segment—all strongly linked to each other—are legion, so the precise ones that drive its association with severe COVID-19 have remained elusive.

Now, Terence Capellini, a Harvard University human evolutionary biologist, and colleagues have systematically evaluated the more than 600 genetic variants in the region. Ultimately, they homed in on three variants that regulate two key chemokine receptor genes that play a role in mediating the cytokine storm that is often involved in the pathogenesis of severe COVID-19. The results, published February 10 in eLife, shed new light on the interplay between the host genome and COVID-19 outcomes and help unravel the molecular mechanisms that underpin severe COVID-19.

“From an evolutionary perspective, this work provides a beautiful example, all the way to the molecular level, of how a small part of our genome that was inherited from Neanderthals is impacting our health . . . to this day,” says Steven Reilly, a geneticist at the Yale School of Medicine, who wasn’t involved in the research. He adds that “the fact that this risk comes from DNA that originated in Neanderthals is very interesting and highlights how complex human ancestry is.”

See “Neanderthal DNA in Modern Human Genomes Is Not Silent

To probe the specific genetic variants or alleles on chromosome 3 and their potential for driving severe COVID-19, Capellini’s team used population genetics and functional genomics techniques in tandem with a Massively Parallel Reporter Assay (MPRA). MPRA is a sophisticated functional genomics tool that allows scientists to test the potential impacts on gene regulatory function of thousands of genetic variants at a time.

The researchers first used computational analyses to understand how the genetic variants in the region overlapped with data on human immune cell function. They then used MPRA “to whittle down large blocks of linked variants to a few that are relevant,” explains Capellini. This allowed them to screen all 613 variants en masse in an immune cell line, which, in turn, enabled them to pinpoint the precise variants that altered the expression of key genes involved in mediating the immune response in COVID-19.

See “The Immune Hallmarks of Severe COVID-19

For those variants that did modulate gene expression, the researchers ascertained which of the two versions of the variant—the Neanderthal (or introgressed) allele, or the modern human one—did so. They thus pared down the 613 genetic variants in the region first to 20 variants that impacted gene expression, and then to four that showed activity differences between the introgressed and nonintrogressed versions. Specifically, they found on further experimentation that three of the four introgressed alleles significantly altered the expression of CCR1 and CCR5, genes that code for key receptors involved in immune signaling between cells in the presence of SARS-CoV-2.

Continue reading below...

Like this story? Sign up for FREE Microbiology updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

The genomic region on chromosome 3 that is linked to severe COVID-19 houses a gene cluster encoding receptors for chemokines—proteins that attract immune cells to an infection. These chemokine receptor genes, such as CCR1, CCR2, CCR3, CCR5, and CCR9, are all located in close proximity to the variants on chromosome 3 that are associated with disease severity and are, thus, in turn, likely to confer risk for severe COVID-19—though they have not been among the genes most strongly associated with severe disease in previous studies.

Zeberg, an evolutionary geneticist at Karolinska Institutet in Stockholm who studies gene flow from Neanderthals and Denisovans into modern humans and who wasn’t part of the research, tells The Scientist that “the combination of experiments and bioinformatics” is praiseworthy. Furthermore, he says “the identification of the CCR5 gene is fascinating,” as he had previously found that this major genetic risk factor for severe COVID-19 protects against HIV.

The genetic basis of any complex disease is difficult to understand at the molecular level, Reilly says, as doing so involves pinpointing the small number of disease-associated genetic changes out of what is a massive genome. “The authors . . . bring in powerful population genetic tools to identify and characterize this locus,” he says, adding that the combination of population genetics and MPRA is more powerful than either approach on its own. He adds that he’s “particularly impressed” by the depth of the study—especially the researchers’ thought to test the variants’ function in the presence of SARS-CoV-2.

Michael Dannemann, an evolutionary geneticist at the University of Tartu in Estonia who also wasn’t part of the research, agrees, telling The Scientist that the application of MPRA to study Neanderthal DNA is a powerful approach and the paper’s discovery of the most likely functionally relevant variants “would not have been possible” using other approaches.

Capellini posits that the paper’s insights could have important therapeutic implications. But Zeberg isn’t so sure. Although there is “a great need to understand the major genetic risk factor for severe COVID-19,” Zeberg says, he tells The Scientist that he is “a bit surprised that the candidate causal variants identified . . . are not among the variants most strongly associated with severe COVID-19 in the genetic association studies.”

How these Neanderthal genes became prominent in the human genome remains to be uncovered. Capellini speculates that the variants could have been beneficial in the past, and therefore, selective pressures cemented their presence in the human genome.

See “Neanderthal Genes Likely Helped Homo sapiens Resist Illness

Reilly concurs that the data would suggest that these alleles conferred some benefit to Neanderthals and ancient humans. “In a modern context it seems to confer risk, but it’s very interesting to think about what adaptive role it was playing earlier in human evolution.”

Related Topics

Meet the Author

  • alakananda dasgupta

    Alakananda Dasgupta is a freelance science journalist based in New Delhi, India, who contributes to The Scientist. She is a medical doctor and a pathologist by training. In 2018, she combined her interests in science and writing and became a science writer. She has done research previously in the field of immunology and is currently writing a book on the subject.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo