How Hummingbirds Taste Nectar

Hummingbirds perceive sweetness through a receptor with which other vertebrates taste savory foods.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, MARCIAL4Birds lack the classical vertebrate sweet taste receptor, but evolution has fashioned a new one for hummingbirds from an ancestral savory, or umami, receptor, according to a report published in Science today (August 21). This repurposed receptor has enabled hummingbirds to glug plant nectar while their closest relatives eat insects.

“It’s long been a puzzle as to how hummingbirds detect sweetness and these investigators, using a whole bunch of different techniques, have pretty much . . . nailed the answer,” said Gary Beauchamp, director of the Monell Chemical Senses Center in Philadelphia, who was not involved in the work.

On the tongues of most vertebrates, the receptor that binds sugars and conveys the sense of sweet taste consists of two subunits called T1R2 and T1R3. When T1R3 is paired with the subunit T1R1, on the other hand, savory flavors from meat, cheese, and fish are sensed. The subunit T1R2 is therefore thought to be largely responsible for sweet taste perception. Indeed, mammals that are solely carnivorous have lost the gene encoding T1R2 and mice genetically ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies